
Experiences using Visualization Techniques to Present
Requirements, Risks to Them, and Options for Risk Mitigation

Martin S. Feather* Steven L. Cornford* James D. Kiper** Tim Menzies***
* Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

** Miami University, Oxford, OH
*** West Virginia University, Morgantown, WV

{Martin.S.Feather, Steven.L.Cornford}@jpl.nasa.gov, kiperjd@muohio.edu, tim@menzies.us

Abstract

For several years we have been employing a risk-

based decision process to guide development and
application of advanced technologies, and for research
and technology portfolio planning. The process is
supported by custom software, in which visualization
plays an important role. During requirements
gathering, visualization is used to help scrutinize the
status (completeness, extent) of the information.
During decision making based on the gathered
information, visualization is used to help decision-
makers understand the space of options and their
consequences.

In this paper we summarize the visualization
capabilities that we have employed, indicating when
and how they have proven useful.

1. Introduction

The purpose of this paper is to report on our
experiences using visualization to help in the early
phases of project planning. This is the time when
requirements are being determined, and planning is
done for the entire development to follow. Key
decisions are made, including: determination of
purpose, from which stem detailed requirements;
planning the rest of a system’s lifecycle, including
subsequent development, testing, deployment,
maintenance and future upgrades; allocation of
resources to those phases (e.g., budget, schedule,
testing platforms), and the determination of the
architecture and early phase design.

Our experiences suggest that there is a non-trivial
amount of information available even during the
earliest phases of the lifecycle. This information comes
from many sources (“stakeholders” in the parlance of
the software community) – the customers, funders,
managers, developers, users, etc. Information may take

the form of guidance extracted from past experience,
coupled with experts’ best estimates in the face of
novel aspects of the effort. Novelty stems from new
applications, new circumstances, new hardware and
software resources, new development methodologies,
etc.

Decision making during these early phases remains
a predominantly human activity, but one which can and
should be well-informed by this wealth of available
information. Visualization can play a prominent role
by portraying the information in ways that make it
amenable to extracting key insights, and open to
scrutiny so that the information basis for the decision
making is clear.

This paper illustrates our work in this area, based on
a novel but effective approach to employing
quantitative reasoning during the early phases of
system (software and/or hardware) developments, and
technology planning. We have previously published on
various aspects of this work, references to which
appear within the paper. Here we focus on how use of
visualization plays a crucial role throughout.

2. Basis for our work

2.1. Fundamental concerns of early-lifecycle
decision making

Our work takes place in the context of early-

lifecycle planning of complex system developments. In
particular, our focus is on spacecraft and spacecraft
technologies, both software and hardware, in their
early phases of development. Although this may seem
an esoteric application area, the concerns that dominate
early-lifecycle decision – cross disciplinary effects,
resource constraints, need for reliability, and novel
aspects of the problem – are common to many
domains. In more detail, these concerns are as follows:

mfeather
Text Box
In the International Workshop on Requirements Engineering Visualization,Minneapolis / St. Paul, Minnesota, Sept. 2006

• Cross-disciplinary concerns (e.g., navigation,
propulsion, telecommunications). These concerns
are cross-coupled and interact in multiple ways
(e.g., electromagnetic interference, heat transfer).

• Severe constraints on the systems being developed
and on the development process itself. Time and
budget pressures constrain development;
operational resources constrain the resulting
system (e.g., mass, volume, power).

• Reliability issues. Spacecraft are critical systems
that must operate correctly the first time in only
partially understood environments, with no chance
for repair.

• Unknowns: past experience provides only a partial
guide when new mission concepts are to be
enhanced and enabled by new technologies of
which past experience is lacking.

Because of this combination of challenging aspects,
invariably no one person has expertise that spans all
the disciplines, or can simultaneously juggle all the
factors involved in large and complex designs.
Furthermore, much of the design skill is tacit
knowledge in the heads of experts, so it cannot be pre-
encoded in an automated tool. Our response has been
to follow a process in which we convene experts, elicit
the relevant knowledge from them, capture it in a
simple but agile model, and use this amalgamated
information to help those experts make decisions. We
describe this process next.

2.2. A risk-based approach to assist
requirements-time decision-making

Use of cost-benefit models for prioritizing software

requirements was convincingly advocated in Karlsson
and Ryan [14]. In their original concept, each
requirement was scored in two dimensions – how
much benefit that requirement would convey, and how
much it would cost to implement. In our setting we
have found that requirements are highly intertwined
with the designs that can be contemplated to (partially)
satisfy them. We therefore use a model from which
cost and benefit can be derived. The model is then used
to guide decision-making, e.g., to select from among
alternative designs.

Our model uses a concept of Risks to interpose
between requirements and designs, the latter being
composed of choices among alternative ways to quell
risks. This is somewhat reminiscent of van
Lamsweerde & Letier’s notion of Obstacles in Goal-
Oriented Requirements [22], however, our model uses
more quantification and less logical substructure. Our
model is called Defect Detection and Prevention
(DDP), the name reflecting its origins as a method

intended for quality assurance planning of hardware
systems [5]. In more detail, a DDP model is populated
by instances of three kinds of concepts: Requirements
– what it is that the system or technology is to achieve,
Risks – what could occur to impede the attainment of
the Requirements, and Mitigations – what could be
done to reduce the likelihood and/or impact of Risks1.
In the DDP model these instances have quantitative
attributes: each Requirement has a weight, its relative
importance; each Risk has a likelihood, its probability
of occurrence, and each Mitigation has a cost, the cost
of performing it – usually a financial cost, but other
resources can also be considered, such as schedule,
power, mass. Quantitative relationships connect these
instances: Requirements are related to Risks, and Risks
are related to Mitigations. Specifically, Requirements
are related to Risks to indicate how much each Risk,
should it occur, impacts (i.e., detracts from the
attainment of) each Requirement. Risks are
quantitatively related to Mitigations, to indicate how
much of a Risk-reducing effect a Mitigation, should it
be applied, has on reducing each Risk, either by
decreasing the Risk’s likelihood, or by reducing the
magnitude of the Risk’s impacts on Requirements; the
nature of the Mitigation dictates which kind of
reduction takes place.

The majority of DDP applications to date have been
in the area of technology infusion [9]. DDP has proven
helpful to clarify the definition of the mission
requirements that the candidate technology will satisfy,
and to identify and address early on the technology-
specific engineering difficulties that may result from
alternative technology/mission architecture decisions.

2.4. DDP models

A DDP model typically consists of dozens of
instances of each of the three concepts (Requirements,
Risks and Mitigations), and hundreds of linkages
among them – Impacts link between Requirements and
Risks, and Effects link between Risks and Mitigations.

This quantity of information, its convoluted nature,
and its origins in the various discipline areas of
spacecraft development, combine to make decision-
making challenging. Especially problematic is the
selection of Mitigations. In almost all applications the
total cost of all the identified Mitigations far exceeds
the resources available, necessitating the careful
selection of which of them to perform. We find that

1 On occasion we use alternate terminology such as

“Objectives” in place of “Requirements”, “Failure Modes”
in place of “Risks”, and “PACTs” – an acronym for
Preventative measures, Analysis, process Controls, and
Tests – in place of “Mitigations”.

spacecraft experts, guided by their skill and past
experience, generally make intuitive selections that are
good. However, there is often some problematic area
that use of the DDP model reveals. Visualization plays
a prominent role by portraying the information in ways
that make evident such problematic areas. DDP’s
capabilities in this regard are presented in the sections
that follow.

3. Scrutinizing a candidate’s status

3.1 Straightforward bar-chart visualizations

DDP uses straightforward bar chart visualizations to

convey the status of an individual set of requirements
and candidate decisions to achieve them. DDP
generates bar charts to show:
• Requirements – each bar represents a

Requirement, displaying its relative importance,
and its degree of attainment in the current design.

• Risks – each bar represents a Risk, displaying its
sum total expected impact on Requirements, both
without any Mitigations (the worst case), and with
the design’s selection of Mitigations.

• Mitigations – each bar represents a Mitigation,
displaying its expected risk-reducing effect.

An example of DDP’s bar chart visualization of
Risks’ status is to be seen in Figure 1,. Each bar
corresponds to a risk. The height of the bar indicates
the sum total expected impact the risk causes – the
height of the green portion indicates its sum total
impact were no Mitigations to be selected, while the
height of the red portion indicates its sum total impact
taking into account the effects of the design’s selection
of Mitigations. The number beneath each bar is a
reference to the corresponding risk in a list of such.

Figure 1. Bar chart of Risks’ status

The bar chart shows that some of the Risks remain
at relatively high levels, while some others have been
reduced to relatively low levels. Note that the vertical
scale is logarithmic, so the disparities are quite
pronounced. This simple visualization is adept at
revealing unbalanced treatment of risks: excessive
resources expended to reduce some risks to tiny levels,
while other significant risks remain relatively
unaddressed.

DDP is also able to track ranges of quantitative
values (e.g., the experts’ estimates of effectiveness of

requirements inspections at uncovering ambiguously
worded requirements might range from 60% to 80%).
A variant of the bar chart display showing such ranges
is seen in Figure 2.

Figure 2. Ranges of risks

This kind of visualization is useful to point out the
consequence of uncertainties in the input data on the
computed values.

DDP also offers the capability to sort the bars (e.g.,
in descending order of mitigated risk), and to group
and/or color-code the bars with respect to user-defined
partitioning of risks into categories. Again, these are
straightforward kinds of manipulations typical of bar
chart displays.

3.2. Alternate visualizations

We have also experimented with using a form of
TreeMap visualization [2] to present status
information. An example appears in Figure 3.

Figure 3. Treemap display of requirements
As is common in using TreeMap like displays,

position, size and color are used to convey different
aspects of the information. Here these are used as
follows:
• Position represents the requirements hierarchy;

sub-requirements of the same grouping appear as
smaller rectangles within a larger rectangular area
representing that grouping.

• Size represents the relative importance of the
requirement or group of requirements it represents.

• Color represents the attainment status of that
requirement, where color ranges from yellow,
indicating a proportion attained of zero, to green,
indicating a proportion attained of 1.0.

Thus a large yellow area would indicate an
important but unattained requirement. This makes it
easy to see the extent to which a given design satisfies
the important requirements. This same information can
be gleaned from a bar chart, but the TreeMap display
often appears more effective as a means to convey this
information.

For understanding how risks are distributed across
the likelihood / impact (a.k.a. severity) dimensions, we
use a 2-D chart layout, as seen in Figure 4.

Figure 4. 2-D chart of risks

Each risk is represented by a small black square,
located with respect to the chart’s two axes,
representing likelihood (vertical) and impact
(horizontal). The dotted lines from each black square
lead to the risk reference number, identical to that used
in the bar chart display.

4. Comparing the details of alternates

When deciding among alternate design candidates it

is useful to be able to scrutinize their details. For
typically sized DDP models, computing and drawing
the display takes less than a second on a 1GHz laptop
for a design’s selection of Mitigations. This makes is
easy for users to try what if scenarios of alternates, and
use the displays shown in the previous section to
scrutinize each one.

In addition, DDP can generate bar charts that
display the differences between a pair of designs. An
example is seen in Figure 5.

Figure 5. Comparing two designs' risks

This figure shows a comparison of the risk status of
two designs. The baseline design is the one shown
earlier in Figure 1; an alternate design is being
compared against it. Black indicates where a risk has
increased with respect to the baseline, and yellow
where a risk has decreased.

For comparison among several designs, we have
found that a Kiviat chart is appropriate to
simultaneously display up to about half a dozen at
once. Figure 6 shows an example.

Figure 6. Kiviat chart of several designs' risks

On this chart each spoke represents a risk. Each
design’s status is indicted by a polygon whose edges
are in a color corresponding to that design. The
polygon’s vertices are positioned along the spokes to
indicate risk magnitude by distance from the center. As
before, dotted lines connect risks to their reference
numbers.

5. Understanding the solution space

Finding a desirable selection of Mitigations can be
challenging, because of the number of Mitigations
from which to select, and the convoluted nature of the
way that Mitigations connect to Risks, and Risks
connect to Requirements. If there are n mitigations,
then there are in principle 2n possible selections from

among them. To solve this, we implemented simulated
annealing [16] within DDP, and use it to locate near-
optimal solutions. We have also explored other forms
of heuristic search: genetic algorithms and machine
learning [6].

We use visualization to convey the results of such
searches, as seen in Figure 7. This plots the result of an
amalgam of searches, revealing the overall cost-benefit
tradespace. Each of the approximately 300,000
individual points in the black cloud corresponds to a
distinct selection of Mitigations. The DDP model has
been used to calculate the cost and benefit of each such
selection, and draw a small black point corresponding
to the solution: cost determines horizontal position;
benefit vertical position. The upper-left frontier of the
cloud is thus the optimal boundary, also referred to as
the Pareto front [19]. Note that while the simulated
annealing search is designed to concentrate towards
this optimal boundary, we plot a point for every
selection investigated by the search, not just the near-
optimal points on that boundary.

For this paper we have annotated the plot to indicate
distinct regions on the Pareto front. Points within the
interior are all inferior to more optimal solutions, of
course. If the budget is low, the optimal solutions fall
within the region where small amounts of additional
funding can lead to radical improvements (i.e., better
attainment of Requirements). Conversely, if the budget
is high, optimal solutions fall within the region where a
law of diminishing returns operates. The ideal is to be
somewhere in the sweet spot region. If the budget is
too small to allow this, such a plot can motivate either
a request for a budget increase, or serious consideration
of descoping (reducing expectations) to be more in line
with the available budget.

Figure 7. Cost-benefit tradespace chart

Sometimes the cost-benefit tradespace has a much
more granular structure, representing different regimes
of solutions at different expenditure levels.

Overall we find this kind of plot cogently reveals
the overall cost-benefit tradespace, information that
supports managerial decision making (e.g., can we

afford this development? is the funding level
appropriate to the problem?).

6. Exploring the solution space

Early in a project lifecycle a plethora of options are
available. We find this to be the case when we
scrutinize the results of our use of heuristic search to
reveal the cost-benefit tradespace. Even when the users
narrow their attention to a relatively small area in the
tradespace there can be thousands of alternative
solutions. This is illustrated with reference to the cost-
benefit tradespace shown in Figure 7. Suppose we
focus on a neighborhood of interest within the sweet
spot characterized by solutions costing no more than
$1,000,000, and by attaining at least 95% of the
maximum benefit attainable within that region – see
Figure 8.

Cost upper
bound of
$1,000,000

Within 5% of
max benefit
attainable for
$1,000,000

$1,000,000

$1,000,000

Figure 8. Neighborhood of interest

Within the dataset that gave rise to this picture,
there are over 3,000 solutions, each of which is a
distinct selections of Mitigations. Many of these will
be similar – from one to the next, they may differ by
only one or two low-cost, low-benefit Mitigations.
However there may be some radically different
solutions present within that same region. We have
experimented with several techniques to explore such
regions. Again, we use a mix of computational power
to automate the exploration, and appropriate use of
visualization to reveal interesting implications,
discussed next.

6.1 Determining Key Decisions

A desirable thing to know is which decisions are

key that is, make a significant difference to the
outcome. In our context, an individual decision is
represented as whether to select a Mitigation. Recall
that each Mitigation represents a design or
development option, so these decisions translate into
design or development choices.

Methods for identifying key decisions have been the
focus of one of this paper’s authors (Menzies) for
several years [17]. In collaboration we have studied
their use within DDP [11]. Briefly, the study involved
several iterations between the DDP tool, and the
treatment learning tool. Each iteration revealed some
additional key decisions – Mitigation selections and
avoidances (ones to not select). In our study, the
process terminated when decisions about one-third of
the Mitigations had been identified, the result of which
was convergence on a small area within the cost-
benefit tradespace. The remaining two-thirds of the
Mitigations turned out to be such small contributors to
variation that the treatment learning approach could not
discern any particularly key remaining decisions
among them.

We use visualization to convey the overall
consequences of this, as seen in Figure 9.

Figure 9. Convergence as iterations identify

key decisions
The convergence towards the compact (red colored)

zone of high benefit solutions is strikingly apparent.
(Note that this figure is generated from a different
model to that underpinning the other cost-benefit
figures, so do not try to compare them.) The net result
is knowledge of how to get to a desired area in the
search space by having identified the subset of the key
decisions and how to make them. The visualization
serves to convince the viewers of the efficacy of that
key decision set.

6.2 Understanding individual decisions’
contributions

We have also experimented with a purely

visualization-based approach to understanding the
contribution of individual decisions [7].

Given the set of points of that constitute a cost-
benefit tradespace, for a Mitigation of interest, we
color each point one color (black, say) if that point
corresponds to a solution not involving use of that
Mitigation, and another color (yellow, say) if it does

involve use of that Mitigation. An example is in Figure
10.

Figure 10. Contribution of an individual

mitigation
The broad swathe of yellow points that dominate a

large fraction of the Pareto front indicate that the
chosen mitigation is key to nearly all optimal solutions
above a certain cost level.

Repeating this for each Mitigation we can gather a
snapshot of their contributions, seen in Figure 11. The
four groupings therein correspond to the four major
user-defined categories into which these 58 Mitigations
were organized.

Figure 11. Snapshots of each Mitigations'

contributions
We have since learned of the visualization tool

ATSV [20] which uses a combination of techniques, of
which color is just one, to show multiple dimensions of
the attributes of a design simultaneously. We are
currently investigating its use on our datasets, and the
preliminary results so far are very promising.

6.3 Identifying interesting alternatives

We have also exploring means to distill information

from the many solutions that lie within a neighborhood
of interest. Our approach to this has been based on a
definition of a metric of similarity between two
solutions (i.e., selections of Mitigations). This metric is
user-defined in terms other than overall cost and/or

benefit of a solution, since all the solutions are within a
small neighborhood of similar costs and similar
benefits. One useful metric might be based on the cost
profile – how the costs fall into major categories. For
example, in a hardware-centric study we did, there
were categories of design, fabrication, assembly and
test; two solutions that had the same overall cost but
allocated that cost very differently between those
categories would be very dissimilar.

Using such metrics we have explored the use of two
techniques: (1) Search for maximally dispersed
solutions within the neighborhood of interest. The idea
of this is to yield a small number of interestingly
distinct solutions [10]. (2) Search for clusters of similar
solutions. The idea of this is to yield a small number of
interestingly distinct clusters, within each of which all
the solutions are relatively similar to one another [15].
For both of these, we again turn to visualization to
present the results.

The visualization of a modest number of dispersed
solutions is seen in Figure 12. The union of Mitigations
involved in one or more of those solutions form the
rows. The grid at the left is used to indicate the distinct
solutions, one per column. A black (white) cell
indicates that the Mitigation of that row is included
(not included) in the solution of that column.
Mitigations that are common to all solutions have been
filtered out of this table to be listed separately (not
shown here), so what remains is a portrayal of the
differences among solutions. In this case the
Mitigations are sorted in descending order of their cost.
From this, it is easy to see that 8 out of 10 of the
solutions include a $200,000 Mitigation, while 2 of
them avoid its use. This is a significant difference
given that the sum total cost of each solution is capped
at $1 million.

The visualization of clusters is similar, seen in
Figure 13. Rows correspond to Mitigations, while in
this portrayal columns correspond to clusters. Since a
cluster itself comprises multiple solutions, a given
Mitigation may be involved in none, some or all of the
solutions in a cluster. This is indicated by shading the
square – white means not involved in any of the
solutions within that cluster; black means involved in
all the solutions within that cluster, and intermediate
shades of grey denote intermediate levels of
involvement.

Figure 12. Visualization of 10 dispersed

solutions

Figure 13. Visualization of clusters of

solutions

7. Investigations of research and
technology portfolios

In addition to applications of DDP to assist the
infusion of individual technologies, in some cases there
have been DDP applications that have focused on
entire portfolios of technologies, the aim being to make
a selection of a set of technologies to pursue. The first
of these was conducted by JPLer David Tralli, who
used DDP to assist activity selection across an entire
program of NASA Earth Science Missions [21].

We have since used this same approach in a pilot
study of the connections between the needs of software
Independent Verification and Validation (IV&V)
practitioners and a related software assurance research
program containing multiple research efforts [12]. The
purpose was to gauge how well the research program
matched practitioner needs. In our pilot study, based on
a partial set of data, we used DDP’s visualization of the
topology of connections between Requirements, Risks
and Mitigations to present the data – the result is seen
in Figure 14.

Figure 14. Topology of Needs-Areas-

Researchers
The top row represents 9 IV&V practitioners. They

were asked to express their needs in terms of the 198
leaf nodes in the software area of the ACM Computing
Classification System [1]. These 198 leaf nodes form
the middle row, and red lines connect practitioners
with their expressed needs. The bottom row represents
19 researchers who were asked to express their
research in terms of the same 198 leaf nodes in the
software area. The green lines connect researchers to
the areas they work in.

We have annotated the DDP-generated chart with 5
ellipses, each exemplifying a different phenomenon:
1. Very good overlap between areas of need shared

by multiple practitioners and those same areas
included in multiple researchers’ activities.

2. An area of potentially over-addressed needs. Only
one practitioner has expressed needs in these
areas, yet multiple researchers have activities in
these areas.

3. Unaddressed needs shared by several practitioners.
4. Unaddressed needs of a single practitioner.

5. Good overlap – areas shared by several
practitioners and covered by several researchers.

Furthermore, our data included quantitative
estimates, of the relative importance of a practitioner’s
needs, and the relative levels of effort of a research’s
activities.. This quantitative data allowed us to utilize
DDP’s risk calculations, but in this model instead of
Requirements impacted by Risks we had we had
Practitioners with needs for improvements in Areas of
Computer Science, and instead of Risks effected by
Mitigations, we had Researchers potentially
contributing to progress in those Areas of Computer
Science.

To show the quantitative aspects, we couple the
topology visualization with the bar chart visualization.
This is seen in Figure 15.

Figure 15. Topology coupled with bar chart

Figure 16. Fulfillment of needs from several

research efforts
The red bars indicate sum total need in each of the

areas, the higher the bar, the more need; again, bar
heights are with respect to a log scale, so the
differences are quite pronounced.

The extent to which researchers’ activities
contribute to the practitioners needs can be calculated
and displayed, as seen in Figure 16. This figure shows
the status when the left three research activities are
selected, identifiable by their connecting lines colored
green. DDP has calculated their combined effect at
meeting practitioners’ needs. The bar chart colors of
red and green indicate, respectively, unfulfilled need,
and need fulfilled by the currently selected researchers.

This topology visualization appears very well-suited
to revealing these phenomena in this particular model,
particularly when coupled with the bar chart display.

8. Conclusions and related work

The purpose of this paper has been to illustrate the

application of software visualization to the earliest
phases of the development lifecycle.

We have illustrated this with examples taken from
our studies of spacecraft technologies and systems,
spanning software, hardware and combinations of both.
All figures in this paper are generated by this software,
and all are based on actual models constructed in the
course of our work.

8.1 Observations

• The requirements phase, when many key decisions

are made on the basis of partial information, is a
ripe area for use of visualization.

• We have not found one single visualization
technique that will serve all purposes – instead we
use a mix of several.

• We make use of relatively simple, commonplace
visualizations: bar charts, 2-dimensional scatter
plots, TreeMap, connection graphs and tabular
formats. These have proven sufficient for many of
our needs.

• Which visualizations to use and when is closely
coupled to the model and data. Our highly
quantitative model favors use of bar charts etc. to
present status of items, and a fixed layout for the
topology of the connections in our model (e.g.,
Figure 14) suffices. By way of contrast, the goal
graphs of van Lamsweerde and Letier [22] are
more general graph structures, presenting greater
need for graph layout capabilities.

• Visualization and computation can complement
one another (e.g., search for interesting
alternatives was followed by visualization to
show their makeup – section 6.3)

8.2 Related work

Karlson & Ryan’s pioneering work on requirements

prioritization [14] looked into the challenges of
selecting the set of requirements to go into the next
iteration of development or release of a product. The
approach is based on gathering estimates for each
requirement of its cost and benefit. Visualization in the
form of a 2-dimensional chart presents the cost vs.
benefit position of individual requirements, thus
allowing users to select accordingly. Similar

approaches are seen in the Win Win project [3] which
supports multiple stakeholders to identify conflicts
between their respective evaluations of requirements,
and to locate feasible solutions that are mutually
satisfactory combinations of requirements. Again,
visualizations in the form of 2-dimensional charts are
used, provided by the automated aids built to support
this approach [13]. Regnell et al use of bar and pie
charts for similar purposes [18]. By way of contrast,
we do not feel able to ascribe directly to a requirement
its cost and benefit – rather, we use our three-layer
Requirements, Risks and Mitigations model to capture
the more intertwined dependencies that we find arise in
many of our studies. Also we deal with larger numbers
of items – many dozens, sometimes hundreds – for
which there is need for additional mechanisms to sort,
elide, filter etc. Again, relatively simple such
mechanisms appear to suffice.

Our display of the Pareto front to visualize the cost-
benefit tradespace is commonplace in the typically
non-software design optimization world [19]. The use
of heuristic search techniques as a tool of optimization
of software engineering problems is discussed in
Clarke et al [4]. That article surveys past applications
of heuristic search in areas of test data generation,
module clustering and cost/effort prediction, and
considers potential applications in additional areas.
Interestingly, one of the areas they consider is the
aforementioned requirements prioritization problem.
Their focus, however, is on matching software
engineering problems to heuristic search methods in
order to be able to apply those methods. They do not
continue to the point where the search results must be
presented to users, and so are not motivated to consider
issues of visualization in support of this.

9. Acknowledgments

The research described in this paper was carried out
at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration and funded
through NASA’s Exploration Systems Mission
Directorate. Reference herein to any specific
commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not
constitute or imply its endorsement by the United
States Government or the Jet Propulsion Laboratory,
California Institute of Technology.

Research and development into the DDP risk-based
model has been supported by NASA’s Office of Safety
and Mission Assurance (FDPP Program and IV&V
ARRT task), Code R (ECS program), and ESMD
Integrated Modeling and Simulation.

.
10. References

[1] ACM Computing Classification System [1998 Version]
http://www.acm.org/class/1998/

[2] Bederson, B.B., Shneiderman, B. and Wattenberg, M.
“Ordered and Quantum Treemaps: Making Effective Use of
2D Space to Display Hierarchies”, ACM Transactions on
Graphics (TOG), 21 (4), October 2002, pp. 833-854.

[3] Boehm, B., Bose, P., Horowitz, E. and Lee, M. “Software
Requirements as Negotiated Win Conditions”, Proceedings
1st International Conference on Requirements Engineering,
Colorado Springs, Colorado, IEEE Computer Society 1994,
pp. 74-83.

[4] Clarke, J., Dolado, J.J., Harman, M., Hierons, R., Jones,
B., Lumkin, M., Mitchell, B., Mancoridis, S., Rees, K.,
Roper, M. and Shepperd, M. “Reformulating software
engineering as a search problem”, IEE Proceedings -
Software Engineering June 2003, 150(03), pp. 161- 175.

[5] Cornford, S.L. “Managing Risk as a Resource using the
Defect Detection and Prevention process”, 4th International
Conference on Probabilistic Safety Assessment and
Management, New York City, NY, September 13-18. 1998.

[6] Cornford, S.L., Feather, M.S., Dunphy, J.R., Salcedo, J.
and Menzies, T. “Optimizing Spacecraft Design –
Optimization Engine Development: Progress and Plans”,
Proceedings of the 2003 IEEE Aerospace Conference, Big
Sky, Montana, March 2003, pp. 7-3361 – 7-3368.

[7] Feather, M.S. “Towards Cost-Effective Reliability
through Visualization of the Reliability Option Space”,
Proceedings of the 2004 Annual Reliability and
Maintainability Symposium (RAMS), Los Angeles CA,
January 2004, pp. 546-552.

[8] Feather, M.S. and Cornford, S.L. “Quantitative Risk-
Based Requirements Reasoning” Requirements Engineering
(2003) 8: pp. 248-263.

[9] M.S. Feather, Cornford, S.L., Hicks K.L. & Johnson,
K.H., “Applications of tool support for risk-informed
requirements reasoning” Computer Systems Science and
Engineering (CRL Publishing Ltd); 20(1): January 2005 pp.
5-17.

[10] Feather, M.S., Kiper, J. and Kalafat, S. “Combining
Heuristic Search, Visualization and Data Mining for
Exploration of System Design Spaces”, 14th Annual
International Symposium Proceedings of INCOSE, Toulouse,
France, June 20-24 2004.

[11] Feather, M.S. and Menzies, T. “Converging on the
Optimal Attainment of Requirements”, Proceedings of the
IEEE Joint International Conference on Requirements

Engineering, Essen, Germany, September 9-13, 2002, IEEE
Computer Society, pp. 263-270.

[12] Feather, M.S., Menzies, T. and Connely, J.R. “Matching
Software Practitioner Needs to Researcher Activities”,
Proceedings of the 10th Asia Pacific Software Engineering
Conference (APSEC 2003), Chiang Mai, Thailand, December
10-12, 2003. IEEE Computer Society, pp. 6-16.

[13] In, H., Roy, S. “Visualization issues for software
requirements negotiation” Computer Software and
Applications Conference, 8-12 Oct 2001, pp. 10-15.

[14] Karlsson, J. and Ryan, K. “A Cost-Value Approach for
Prioritizing Requirements”, IEEE Software, Sept./Oct. 1997,
pp. 67-74.

[15] Kiper, J.D. and Feather, M.S. “Mining Complex
Requirements Specifications to Mitigate Risk via
Clustering”, Proceedings, Workshop on Intelligent
Technologies for Software Engineering (WITSE’04), Linz,
Austria, September 20-25 2004, Austrian Computer Society.

[16] Kirkpatrick, S., Gelatt Jr., C.D. and Vecchi, M.P.
“Optimization by simulated annealing”. Science, (13 May
1983), Volume 220, Number 4598, pp. 671–680.

[17] Menzies, T. and Hu, Y. “Data Mining for Very Busy
People”, IEEE Computer 36(11), November 2003, pp. 22-29.

[18] Regnell, B., Host, M., Nach och Dag, J., Beremark, P. &
Hjelm, T. “An Industrial Case Study on Distributed
Prioritisation in Market-Driven Requirements Engineering
for Packaged Software”, Requirements Engineering 2001 6:
pp. 51-62.

[19] Sen, P. and Yang, J-B. Multiple Criteria Decision
Support in Engineering Design, Springer-Verlag, 1998.

[20] Stump, G. M., Yukish, M., Simpson, T. W., and
Bennett, L. “Multidimensional Visualization and Its
Application to a Design by Shopping Paradigm”,
Proceedings 9th AIAA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, Atlanta, GA,
2002, AIAA, AIAA-2002-5622.

[21] Tralli, D.M. “Programmatic Risk Balancing”,
Proceedings of the 2003 IEEE Aerospace Conference, Big
Sky MT, March 2003.

[22] van Lamsweerde, A. & Letier, E.. “Handling Obstacles
in goal-oriented requirements engineering”. IEEE
Transactions on Software Engineering, 26(10), 2000, pp.
978-1005.

